Showing chemical card for 3,5-Diiodothyronine (CFc000000454)
Record Information
Version
1.0
Creation Date
2022-08-28 10:25:12 UTC
Update Date
2022-09-13 18:44:50 UTC
Chemfont ID
CFc000000454
Molecule Identification
Common Name
3,5-Diiodothyronine
Definition
3,5-Diiodothyronine, also known as 3,5-T2, belongs to the class of organic compounds known as phenylalanines and derivatives. Phenylalanine and derivatives are compounds containing phenylalanine or a derivative thereof resulting from reaction of phenylalanine at the amino group or the carboxy group, or from the replacement of any hydrogen of glycine by a heteroatom. It is also a member of the class of compounds known as iodothyronines. Iodothyronines are phenolic amino acids with iodine substituents. 3,5-Diiodothyronine is a metabolite of the two main thyroid hormones T3 and T4 (thyroxine and triiodo-L-thyronine). It is a biologically active iodothyronine with mitochondria and bioenergetic mechanisms being the major targets of 3,5-T2. Nanomolar concentrations of 3,5-T2 significantly increases cytochrome oxidase (COX) activity (PMID: 30090086 ). It increases COX activity by preventing the interaction of adenosine triphosphate (ATP) as an allosteric inhibitor. At 1 pM concentration, 3,5-T2 stimulates oxygen consumption more rapidly than thyroxine (T3). A case report involving two human participants revealed that administration of 3,5-T2 to humans (1-5 ug/kg BW) rapidly (after 4-6 h) increased resting metabolic rate. Chronic 3,5-T2 administration (28 days, approximately 5 ug/kg BW) increased resting metabolic rate by approximately 15% and decreased body weight by approximately 4 kg in both participants (PMID: 22217997 ). 3,5-T2 stimulates the thyroid receptor (TR)-beta receptor for thyroid hormones and thus increases energy expenditure. It has agonistic (thyromimetic) effects on myocardial tissue and on the pituitary, which results in 3,5-T2 suppressing thyroid stimulating hormone release.
Belongs to the class of organic compounds known as phenylalanine and derivatives. Phenylalanine and derivatives are compounds containing phenylalanine or a derivative thereof resulting from reaction of phenylalanine at the amino group or the carboxy group, or from the replacement of any hydrogen of glycine by a heteroatom.
Valashek, I. E.; Kochergin, P. M.; Vinogradova, E. M.; Budanova, L. I. Synthesis of 3,5-diiodo-DL-thyronine. Khimiko-Farmatsevticheskii Zhurnal (1995), 29(6), 44.